An electric motor is an electrical machine that converts electrical energy into mechanical energy. Most electric motors operate through the interaction between the motor's magnetic field and electric current in a wire winding to generate force in the form of torque applied on the motor's shaft. An electric generator is mechanically identical to an electric motor, but operates with a reversed flow of power, converting mechanical energy into electrical energy.
Electric motors produce linear or rotary force (torque) intended to propel some external mechanism, such as a fan or an elevator. An electric motor is generally designed for continuous rotation, or for linear movement over a significant distance compared to its size. Magnetic solenoids are also transducers that convert electrical power to mechanical motion, but can produce motion over only a limited distance.
electrical machines 1 by gnanavadivel pdf 94
Download: https://tinurli.com/2vCZlZ
A benefit to DC machines came from the discovery of the reversibility of the electric machine, which was announced by Siemens in 1867 and observed by Pacinotti in 1869.[6] Gramme accidentally demonstrated it on the occasion of the 1873 Vienna World's Fair, when he connected two such DC devices up to 2 km from each other, using one of them as a generator and the other as motor.[25]
Electric motors revolutionized industry. Industrial processes were no longer limited by power transmission using line shafts, belts, compressed air or hydraulic pressure. Instead, every machine could be equipped with its own power source, providing easy control at the point of use, and improving power transmission efficiency. Electric motors applied in agriculture eliminated human and animal muscle power from such tasks as handling grain or pumping water. Household uses (like in washing machines, dishwashers, fans, air conditioners and refrigerators (replacing ice boxes)) of electric motors reduced heavy labor in the home and made higher standards of convenience, comfort and safety possible. Today, electric motors consume more than half of the electric energy produced in the US.[29]
The two mechanical parts of an electric motor are the rotor, which moves, and the stator, which does not. It also includes two electrical parts, a set of magnets and an armature, one of which is attached to the rotor and the other to the stator, together forming a magnetic circuit:[49]
An air gap between the stator and rotor allows it to turn. The width of the gap has a significant effect on the motor's electrical characteristics. It is generally made as small as possible, as a large gap weakens performance. It is the main source of the low power factor at which motors operate. The magnetizing current increases and the power factor decreases with the air gap, so narrow gaps are better. Conversely, gaps that are too small may pose mechanical problems in addition to noise and losses.
The stator surrounds the rotor, and usually holds field magnets, which are either electromagnets consisting of wire windings around a ferromagnetic iron core or permanent magnets. These create a magnetic field that passes through the rotor armature, exerting force on the windings. The stator core is made up of many thin metal sheets that are insulated from each other, called laminations. These laminations are made using electrical steel which has a specified magnetic permeability, hysteresis, and saturation. Laminations are used to reduce losses that would result from induced circulating eddy currents that would flow if a solid core were used. Mains powered AC motors typically immobilize the wires within the windings by impregnating them with varnish in a vacuum. This prevents the wires in the winding from vibrating against each other which would abrade the wire insulation causing it to fail prematurely. Resin-packed motors, used in deep well submersible pumps, washing machines, and air conditioners, encapsulate the stator in plastic resin to prevent corrosion and/or reduce conducted noise.[52]
Electric machines come in salient- and nonsalient-pole configurations. In a salient-pole motor the ferromagnetic cores on the rotor and stator have projections called poles facing each other, with a wire winding around each pole below the pole face, which become north or south poles of the magnetic field when current flows through the wire. In a nonsalient-pole (or distributed field or round-rotor) motor, the ferromagnetic core is a smooth cylinder, with the windings distributed evenly in slots about the circumference. Supplying alternating current in the windings creates poles in the core that rotate continuously.[53] A shaded-pole motor has a winding around part of the pole that delays the phase of the magnetic field for that pole.
A commutator is a rotary electrical switch that supplies current to the rotor. It periodically reverses the flow of current in the rotor windings as the shaft rotates. It consists of a cylinder composed of multiple metal contact segments on the armature. Two or more electrical contacts called "brushes" made of a soft conductive material like carbon press against the commutator. The brushes make sliding contact with successive commutator segments as it rotates, supplying current to the rotor. The windings on the rotor are connected to the commutator segments. The commutator periodically reverses the current direction in the rotor windings with each half turn (180), so the torque applied to the rotor is always in the same direction.[54] Without this current reversal, the direction of torque on each rotor winding would reverse with each half turn, so the rotor would stop. Commutators are inefficient and commutated motors have been mostly replaced by brushless direct current motors, permanent magnet motors, and induction motors.
A permanent magnet (PM) motor does not have a field winding on the stator frame, relying instead on PMs to provide the magnetic field. Compensating windings in series with the armature may be used on large motors to improve commutation under load. This field is fixed and cannot be adjusted for speed control. PM fields (stators) are convenient in miniature motors to eliminate the power consumption of the field winding. Most larger DC motors are of the "dynamo" type, which have stator windings. Historically, PMs could not be made to retain high flux if they were disassembled; field windings were more practical to obtain the needed flux. However, large PMs are costly, as well as dangerous and difficult to assemble; this favors wound fields for large machines.
To minimize overall weight and size, miniature PM motors may use high energy magnets made with neodymium; most are neodymium-iron-boron alloy. With their higher flux density, electric machines with high-energy PMs are at least competitive with all optimally designed singly-fed synchronous and induction electric machines. Miniature motors resemble the structure in the illustration, except that they have at least three rotor poles (to ensure starting, regardless of rotor position) and their outer housing is a steel tube that magnetically links the exteriors of the curved field magnets.
A commutated, electrically excited, series or parallel wound motor is referred to as a universal motor because it can be designed to operate on either AC or DC power. A universal motor can operate well on AC because the current in both the field and the armature coils (and hence the resultant magnetic fields) synchronously reverse polarity, and hence the resulting mechanical force occurs in a constant direction of rotation.
An advantage is that AC power may be used on motors that specifically have high starting torque and compact design if high running speeds are used. By contrast, maintenance is higher and lifetimes are shortened. Such motors are used in devices that are not heavily used, and have high starting-torque demands. Multiple taps on the field coil provide (imprecise) stepped speed control. Household blenders that advertise many speeds typically combine a field coil with several taps and a diode that can be inserted in series with the motor (causing the motor to run on half-wave rectified AC). Universal motors also lend themselves to electronic speed control and, as such, are a choice for devices such as domestic washing machines. The motor can agitate the drum (both forwards and in reverse) by switching the field winding with respect to the armature.
Induction motors may be divided into Squirrel Cage Induction Motors (SCIM) and Wound Rotor Induction Motors (WRIM). SCIMs have a heavy winding made up of solid bars, usually aluminum or copper, electrically connected by rings at the ends of the rotor. The bars and rings as a whole are much like an animal's rotating exercise cage.
Another common application is to control the throttle of an internal combustion engine with an electronic governor. The motor works against a return spring to move the throttle in accord with the governor output. The latter monitors engine speed by counting electrical pulses from the ignition system or from a magnetic pickup and depending on the speed, makes small adjustments to the amount of current. If the engine slows down relative to the desired speed, the current increases, producing more torque, pulling against the return spring and opening the throttle. Should the engine run too fast, the governor reduces the current, allowing the return spring to pull back and reduce the throttle.
Doubly fed electric motors have two independent multiphase winding sets, which contribute active (i.e., working) power to the energy conversion process, with at least one of the winding sets electronically controlled for variable speed operation. Two independent multiphase winding sets (i.e., dual armature) are the maximum provided in a single package without topology duplication. Doubly-fed electric motors have an effective constant torque speed range that is twice synchronous speed for a given frequency of excitation. This is twice the constant torque speed range as singly-fed electric machines, which have only one active winding set. 2ff7e9595c
Comments